181k views
3 votes
The point R(-3,a,-1) is the midpoint of the line segment jointing the points P(1,2,b)

and Q(c,-7,4)
Find the values of:
a=
b=
C=

User Alizahid
by
4.4k points

1 Answer

2 votes

Answer:

The values are:


  • a = -5/2

  • b = -6

  • c = -7

Explanation:

Given:

  • P = (x₁, y₁, z₁) = (1, 2, b)
  • Q = (x₂, y₂, z₂) = (c, -7, 4)
  • m = R = (x, y, z) = (-3, a, -1)

To Determine:

a = ?

b = ?

c = ?

Determining the values of a, b, and c

Using the mid-point formula


m\:=\:\left((x_1+x_2)/(2),\:(y_1+y_2)/(2),\:(z_1+z_2)/(2)\right)

  • As the point R(-3, a, -1) is the midpoint of the line segment jointing the points P(1,2,b) and Q(c,-7,4), so
  • m = R = (x, y, z) = (-3, a, -1)

Using the mid-point formula


m\:=\:\left((x_1+x_2)/(2),\:(y_1+y_2)/(2),\:(z_1+z_2)/(2)\right)

given

(x₁, y₁, z₁) = (1, 2, b) = P

(x₂, y₂, z₂) = (c, -7, 4) = Q

m = (x, y, z) = (-3, a, -1) = R

substituting the value of (x₁, y₁, z₁) = (1, 2, b) = P, (x₂, y₂, z₂) = (c, -7, 4) = Q, and m = (x, y, z) = (-3, a, -1) = R in the mid-point formula


m\:=\:\left((x_1+x_2)/(2),\:(y_1+y_2)/(2),\:(z_1+z_2)/(2)\right)


\left(x,\:y,\:z\right)\:=\:\left((1+c)/(2),\:(2+\left(-7\right))/(2),\:(b+4)/(2)\right)

as (x, y, z) = (-3, a, -1), so


\left(-3,\:a,\:-1\right)\:=\:\left((1+c)/(2),\:(2+\left(-7\right))/(2),\:(b+4)/(2)\right)

Determining 'c'

-3 = (1+c) / (2)

-3 × 2 = 1+c


1+c = -6


c = -6 - 1


c = -7

Determining 'a'

a = (2+(-7)) / 2


2a = 2-7


2a = -5


a = -5/2

Determining 'b'

-1 = (b+4) / 2


-2 = b+4


b = -2-4


b = -6

Therefore, the values are:


  • a = -5/2

  • b = -6

  • c = -7
User StackMonk
by
4.4k points