Answer:
Kindly check explanation
0.57691
0.4719
Explanation
A.) The distribution of sample means must follow a normal distribution ;
Mean = 64 ; Standard deviation = 17 ;
Standard Error = s/sqrt(n) = 17 / sqrt(20) = 3.8013155
N(64 ~ 17)
Given that:
mean (m) = 64
Sample size (n) = 20
Standard deviation (s) = 17
Find
P(x < 67.3)
Z = (x - m) / s
Zscore = (67.3 - 64) / 17
Zscore = 0.1941176
P(Z < 0.194) = 0.57691 (Z probability calculator)
(c) Find P(x > 65.2).
Zscore = (65.2 - 64) / 17
Zscore = 0.0705882
P(Z > 0.0705) = 0.4719 (Z probability calculator)