139k views
3 votes
Triangle ABC is formed by the vertices A(1,2,-1), B(-3,-6,2)and C(3,-2,0).

If D is the midpoint of BC, the the length (distance) of AD.
write the midpoint
write the distance

User Svetlana
by
5.0k points

1 Answer

2 votes

Answer:

Point D:
(0,-4, 1 )

d = √41

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Pre-Calculus

  • Midpoint Formula [3D]:
    ((x_1+x_2)/(2),(y_1+y_2)/(2), (z_1+z_2)/(2) )
  • Distance Formula [3D]:
    d = √((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2)

Explanation:

Step 1: Define

Point A(1, 2, -1)

Point B(-3, -6, 2)

Point C(3, -2, 0)

Step 2: Find Point D

Simply plug in your coordinates B and C into the midpoint formula to find midpoint

  1. Substitute [MF]:
    ((-3+3)/(2),(-6-2)/(2), (2+0)/(2) )
  2. Add/Subtract:
    ((0)/(2),(-8)/(2), (2)/(2) )
  3. Divide:
    (0,-4, 1 )

Step 3: Find distance d

Simply plug in the 2 coordinates A and D into the distance formula to find distance d

  1. Substitute [DF]:
    d = √((0-1)^2+(-4-2)^2+(1+1)^2)
  2. Subtract/Add:
    d = √((-1)^2+(-6)^2+(2)^2)
  3. Exponents:
    d = √(1+36+4)
  4. Add:
    d = √(41)
User Oleh H
by
5.8k points