106k views
3 votes
Determine whether each equation is True or False. In case you find a "False" equation, explain why is False.​

Determine whether each equation is True or False. In case you find a "False&quot-example-1

1 Answer

0 votes

Answer:

(1) TRUE.

(2) FALSE.

(3) FALSE.

(4) TRUE.

(5) FALSE.

Explanation:

(1)
√(32) = 2^{(5)/(2) }


2^{(5)/(2) } = (√(2) )^5 = (√(2) \ * \ √(2) \ * \ √(2) \ * \ √(2) \ * \ √(2)) = 4√(2)\\\\√(32) = √(16 \ * \ 2)\ = \ √(16) \ * \ √(2) \ = \ 4√(2)

Thus, the equation is TRUE.

(2)
16^{(3)/(8) } = 8^2


16^{(3)/(8) } =(2^4)^{(3)/(8) } = 2^(3)/(2) }= (√(2) )^3 = (√(2) \ * \ √(2) \ * \ √(2)) = 2√(2) \\\\8^2 = 64

Thus, the equation is FALSE.

(3)
4^{(1)/(2) } = \sqrt[4]{64}


4^{(1)/(2) }= √(4) = 2\\\\\sqrt[4]{64} = (64)^{(1)/(4) } = (2^6)^{(1)/(4) }= 2^{(6)/(4) } = 2^{(3)/(2) }=(√(2) )^3 = (√(2) * √(2) * √(2) ) = 2√(2)

Thus, the equation is FALSE.

(4)
2^8 = (\sqrt[3]{16} )^6


2^8 = 256\\\\ (\sqrt[3]{16} )^6 = (16)^{(6)/(3) } = (2^4)^{(6)/(3) } = (2)^{(24)/(3) } = 2^8 = 256

Thus, the equation is TRUE.

(5)
(√(64) )^{(1)/(3) } = 8^{(1)/(6) }\\\\


8^{(1)/(6) } = (2^3)^{(1)/(6) } = 2^{(3)/(6) } = 2^{(1)/(2) } = √(2) \\\\(√(64) )^{(1)/(3) } = (2^6)^{(1)/(3) } = 2^{(6)/(3) } = 2^2 = 4

Thus, the equation is FALSE.

User Javier Ramirez
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.