106k views
3 votes
Determine whether each equation is True or False. In case you find a "False" equation, explain why is False.​

Determine whether each equation is True or False. In case you find a "False&quot-example-1

1 Answer

0 votes

Answer:

(1) TRUE.

(2) FALSE.

(3) FALSE.

(4) TRUE.

(5) FALSE.

Explanation:

(1)
√(32) = 2^{(5)/(2) }


2^{(5)/(2) } = (√(2) )^5 = (√(2) \ * \ √(2) \ * \ √(2) \ * \ √(2) \ * \ √(2)) = 4√(2)\\\\√(32) = √(16 \ * \ 2)\ = \ √(16) \ * \ √(2) \ = \ 4√(2)

Thus, the equation is TRUE.

(2)
16^{(3)/(8) } = 8^2


16^{(3)/(8) } =(2^4)^{(3)/(8) } = 2^(3)/(2) }= (√(2) )^3 = (√(2) \ * \ √(2) \ * \ √(2)) = 2√(2) \\\\8^2 = 64

Thus, the equation is FALSE.

(3)
4^{(1)/(2) } = \sqrt[4]{64}


4^{(1)/(2) }= √(4) = 2\\\\\sqrt[4]{64} = (64)^{(1)/(4) } = (2^6)^{(1)/(4) }= 2^{(6)/(4) } = 2^{(3)/(2) }=(√(2) )^3 = (√(2) * √(2) * √(2) ) = 2√(2)

Thus, the equation is FALSE.

(4)
2^8 = (\sqrt[3]{16} )^6


2^8 = 256\\\\ (\sqrt[3]{16} )^6 = (16)^{(6)/(3) } = (2^4)^{(6)/(3) } = (2)^{(24)/(3) } = 2^8 = 256

Thus, the equation is TRUE.

(5)
(√(64) )^{(1)/(3) } = 8^{(1)/(6) }\\\\


8^{(1)/(6) } = (2^3)^{(1)/(6) } = 2^{(3)/(6) } = 2^{(1)/(2) } = √(2) \\\\(√(64) )^{(1)/(3) } = (2^6)^{(1)/(3) } = 2^{(6)/(3) } = 2^2 = 4

Thus, the equation is FALSE.

User Javier Ramirez
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories