Answer:
![t _(critical) = 1.760](https://img.qammunity.org/2021/formulas/mathematics/college/9oh7v1lm90duq2epf9gi8knrsqinrvet7h.png)
t = 2.2450
d. 0.264
Explanation:
The null hypothesis is:
![H_o: \mu_1 - \mu_2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/12tsxd2j9lopixc7jmlw7q9yi1x4k63dmg.png)
Alternative hypothesis;
![H_a : \mu_1 - \mu_2 > 0\\](https://img.qammunity.org/2021/formulas/mathematics/college/agqpcp05uq7an3lehxtuyxtcf441ivzzgj.png)
The pooled variance t-Test would have been determined if the population variance are the same.
![S_p^2 = ((n_1-1)S_1^2+(n_2-1)S^2_2)/((n_1-1)+(n_2-1))](https://img.qammunity.org/2021/formulas/mathematics/college/2laofeh0ow5pto7uwm5nmkegau1i937e3q.png)
![S_p^2 = ((8-1)2.507^2+(8-1)2.8282^2)/((8-1)+(8-1))](https://img.qammunity.org/2021/formulas/mathematics/college/mxot7tu2kwr5mmxchm23034a4ww9592gnk.png)
![S_p^2 = 7.14](https://img.qammunity.org/2021/formulas/mathematics/college/rbn897rkfhp6izb12ro757drwuq3fv20f7.png)
The t-test statistics can be computed as:
![t= \frac{(x_1-x_2)-(\mu_1 - \mu_2)}{\sqrt{Sp^2 ( (1)/(n) +(1)/(n_2))}}](https://img.qammunity.org/2021/formulas/mathematics/college/zlz1jp4dx5e9dhjwldlkevhb7ptq4998jh.png)
![t= \frac{(9-6)-0}{\sqrt{7.14 ( (1)/(8) +(1)/(8))}}](https://img.qammunity.org/2021/formulas/mathematics/college/wfqekdm1hhxbab7keps4ewgtxilboovnhj.png)
![t= (3)/(1.336)](https://img.qammunity.org/2021/formulas/mathematics/college/8ty2w6usre16yx226dow9xmgvx39tarmv6.png)
t = 2.2450
Degree of freedom
![df = (n_1 -1) + ( n_2 +1 )](https://img.qammunity.org/2021/formulas/mathematics/college/sumpny9786n4n74quj3cver1p4itg8kp10.png)
df = (8-1)+(8-1)
df = 7 + 7
df = 14
At df = 14 and ∝ = 0.05;
![t _(critical) = 1.760](https://img.qammunity.org/2021/formulas/mathematics/college/9oh7v1lm90duq2epf9gi8knrsqinrvet7h.png)
Decision Rule: To reject the null hypothesis if the t-test is greater than the critical value.
Conclusion: We reject
and there is sufficient evidence to conclude that the test scores for contact address s less than Noncontact athletes.
To calculate r²
The percentage of the variance is;
![r^2 = (t^2)/(t^2 + df)](https://img.qammunity.org/2021/formulas/mathematics/college/3iqfgkm82mys17bqskyg9k1xz5rxpeskfw.png)
![r^2 = (2.2450^2)/(2.2450^2 + 14)](https://img.qammunity.org/2021/formulas/mathematics/college/bpfwk0y21a5oroixwwf1ij2adb9hffotkb.png)
![r^2 = (5.040025)/(5.040025+ 14)](https://img.qammunity.org/2021/formulas/mathematics/college/yovgvt6s8iwmnap5ynp8rerveckn87dkfg.png)
![r^2 = 0.2647](https://img.qammunity.org/2021/formulas/mathematics/college/knhe6bb2lp56z2ix4m808qfxcxzfjdd3ay.png)