Note: Your expression sounds a little unclear, so I am assuming your expression is
![\left(y\:+\:1\right)^5* \left(y\:+\:1\right)^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/osk999x4y31m65hrg53suahetuo1vzeu3e.png)
But, the procedure to solve the expressions involving exponents remains the same, so whatever the expression is, you may be able to get your concept clear.
In the end, I will solve both expressions.
Answer:
Please check the explanation
Explanation:
Given the expression
![\left(y\:+\:1\right)^5* \left(y\:+\:1\right)^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/osk999x4y31m65hrg53suahetuo1vzeu3e.png)
solving the expression
![\left(y\:+\:1\right)^5* \left(y\:+\:1\right)^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/osk999x4y31m65hrg53suahetuo1vzeu3e.png)
![\mathrm{Apply\:exponent\:rule}:\quad \:a^b* \:a^c=a^(b+c)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8jtbtap7ptexilet9s0qg1o6t1muqw0sf0.png)
![\left(y+1\right)^5\left(y+1\right)^3=\left(y+1\right)^(5+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bwktomae6cn192xws2w8nzizi8zgxpk3b1.png)
![=\left(y+1\right)^8](https://img.qammunity.org/2021/formulas/mathematics/high-school/sma11ks557ll90mihkgb61pm3lraiftqp0.png)
Therefore, we conclude that:
![\left(y\:+\:1\right)^5* \left(y\:+\:1\right)^3=\left(y+1\right)^8](https://img.qammunity.org/2021/formulas/mathematics/high-school/wk3ervx2lzvf3m16yiomiv4ihmftu3hola.png)
IF YOUR EXPRESSION IS THIS
↓
![\left(y\:+\:1\right)^(\left(5y+1\right)^3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n40mvce24jhzpybi0f0dmt080lkntd9lc7.png)
solving the expression
as
![\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/8poxjfxoctbhoqadvs84kimx0v1flcxf7k.png)
so
![\left(5y+1\right)^3=125y^3+75y^2+15y+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/7q1w8n043v12gozxf3bxyudtsifwf20xaq.png)
![=125y^3+75y^2+15y+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ngiko4j7y6t2bsl4mboqbl2tmoudqvpxjo.png)
Thus, the expression becomes
![\left(y+1\right)^(\left(5y+1\right)^3)=\left(y+1\right)^(125y^3+75y^2+15y+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3f9are3l0oe0elnr0z9sj5jjt643a5xu3l.png)