164k views
5 votes
Find the quantity of heat needed

to melt 100g of ice at -10 °C
into water at 10 °C. (39900 J)
(Note: Specific heat of ice is
2100 Jkg 'K', specific heat
of water is 4200 Jkg K',
Latent heat of fusion of ice is
336000 Jkg ').​

1 Answer

6 votes

Answer:

Approximately
3.99* 10^(4)\; \rm J (assuming that the melting point of ice is
0\; \rm ^\circ C.)

Step-by-step explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.


\begin{aligned}m&= 100\; \rm g * (1\; \rm kg)/(1000\; \rm g) \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that
    0.100\; \rm kg of ice from
    (-10\; \rm ^\circ C) to
    0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn
    0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed
    0.100\; \rm kg of water from
    0\; \rm ^\circ C to
    10\;\ rm ^\circ C.

The following equation gives the amount of energy
Q required to raise the temperature of a sample of mass
m and specific heat capacity
c by
\Delta T:


Q = c \cdot m \cdot \Delta T,

where


  • c is the specific heat capacity of the material,

  • m is the mass of the sample, and

  • \Delta T is the change in the temperature of this sample.

For the first part of energy input,
c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^(-1) whereas
m = 0.100\; \rm kg. Calculate the change in the temperature:


\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:


\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^(-1) \\ &\quad\quad * 0.100\; \rm kg * 10\; \rm K\\ &= 2.10* 10^(3)\; \rm J\end{aligned}.

Similarly, for the third part of energy input,
c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^(-1) whereas
m = 0.100\; \rm kg. Calculate the change in the temperature:


\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:


\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^(-1) \\ &\quad\quad * 0.100\; \rm kg * 10\; \rm K\\ &= 4.20* 10^(3)\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy
Q required to melt a sample of mass
m and latent heat of fusion
L_\text{f} is:


Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:


\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg * 3.36* 10^(5)\; \rm J\cdot kg^(-1) \\ &= 3.36* 10^(4)\; \rm J\end{aligned}.

Find the sum of these three parts of energy:


\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99* 10^(4)\; \rm J\end{aligned}.

User Harit Vishwakarma
by
4.7k points