Answer:
11
Explanation:
Because 4 and 6 aren't co prime we can't start the chinese remainder theorem
so first we check
![x\equiv 3\mod4\\\\\rightarrow x\equiv 3 \mod 2\\\\\rightarrow x \equiv 3 \mod 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/52cely6zdfav6m3mjdyfzvn2i3vfnlgm37.png)
because 4 = 2*2
![x\equiv3\equiv1\mod2](https://img.qammunity.org/2021/formulas/mathematics/high-school/vi5gg75mg24nxkkjqp6fu203g8lyadfitw.png)
and the other one
![x\equiv5\mod6\\\\\rightarrow x\equiv5\mod2\\\\\rightarrow x\equiv5\mod3\\\\x\equiv5\equiv1\mod2\\\\x\equiv5\equiv2\mod3](https://img.qammunity.org/2021/formulas/mathematics/high-school/dwk389tkjf9ltyxan5pxltv9xs3pvn2rdm.png)
so now we have
![x\equiv3\mod4\\\\x\equiv1\mod2\\\\x\equiv2\mod3](https://img.qammunity.org/2021/formulas/mathematics/high-school/82lcwagbfov5xgu3tz72t6rxuahjwzb4ex.png)
but the mod 2 we don't need it
so now we have
![x\equiv3\mod 4\\\\x\equiv 2\mod 3\\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/7uy6j5mousg5afw1naqsvranuaz3mozwuf.png)
for the first one we can say that
![x=4n+3](https://img.qammunity.org/2021/formulas/mathematics/high-school/7088ha9ziwqdo5ltx1q4k9xba5vu3kcgkw.png)
so we plug in that in the second one
![4n+3\equiv2\mod3\\\\4n\equiv2\mod3\\\\n\equiv2\mod3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ifa732j175zvipkwmdhb9a41x1qwh6veb9.png)
we can say that
![n=3k+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ttqh6aquq6yqmodgf6n7y4rn80zgrc4hjm.png)
so for x
![x=4(3k+2)+3\\\\x=12k+8+3\\\\x=12k+11](https://img.qammunity.org/2021/formulas/mathematics/high-school/56f9ttwbaiuplrbtk8whm9reg4nc2mdwo6.png)
so if k=0
a solution is 11
we check if it works
![11\equiv8+3\equiv0+3\equiv3\mod4](https://img.qammunity.org/2021/formulas/mathematics/high-school/p1z8k1zevfn9nast5uxbqhkjv94jxu3vod.png)
![11\equiv6+5\equiv0+5\equiv5\mod6](https://img.qammunity.org/2021/formulas/mathematics/high-school/zcwech8iialgls9lbbl3w2hyurchmvcqvf.png)
so it works so the smallest solution is 11