Answer:
The value is
![R_f = (4)/(5) R](https://img.qammunity.org/2021/formulas/physics/college/f73v6m398u9xakkfwu1gfs6vwj6h00wv3y.png)
Step-by-step explanation:
From the question we are told that
The initial velocity of the proton is
At a distance R from the nucleus the velocity is
The velocity considered is
![v_2 = (1)/(4) v_o](https://img.qammunity.org/2021/formulas/physics/college/ba2g2ak51hmj2v72vxjqkpq61pfqayrudb.png)
Generally considering from initial position to a position of distance R from the nucleus
Generally from the law of energy conservation we have that
![\Delta K = \Delta P](https://img.qammunity.org/2021/formulas/physics/college/uq36mf508pnpq11fk3pfsu3314un6h4dvx.png)
Here
is the change in kinetic energy from initial position to a position of distance R from the nucleus , this is mathematically represented as
![\Delta K = K__(R)} - K_i](https://img.qammunity.org/2021/formulas/physics/college/turga7c7u3kzrmfe4jiqgky2t6j99euyin.png)
=>
![\Delta K = (1)/(2) * m * v_1^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/16d702mfltsnrt5db0hczhyp0sisjj43c7.png)
=>
![\Delta K = (1)/(2) * m * ((1)/(2) * v_o )^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/qoczoggdnc25rcxuo2ztyuaen0bgvudmph.png)
=>
![\Delta K = (1)/(2) * m * (1)/(4) * v_o ^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/jcfhouej0rua5paacgjm28gbcyuahh2p73.png)
And
is the change in electric potential energy from initial position to a position of distance R from the nucleus , this is mathematically represented as
![\Delta P = P_f - P_i](https://img.qammunity.org/2021/formulas/physics/college/thp0inaw3nhcipg79r19qt3qy1phx6l0fq.png)
Here
is zero because the electric potential energy at the initial stage is zero so
![\Delta P = k * (q_1 * q_2 )/(R) - 0](https://img.qammunity.org/2021/formulas/physics/college/73mx2g3vx1y2f4fyqb8jgnznsi5bw8pgig.png)
So
![(1)/(2) * m * (1)/(4) * v_o ^2 - (1)/(2) * m * v_o^2 = k * (q_1 * q_2 )/(R) - 0](https://img.qammunity.org/2021/formulas/physics/college/onlgs1s6dfbmaixeo7ii2oei3hfj40bb72.png)
=>
![(1)/(2) * m *v_0^2 [ (1)/(4) -1 ] = k * (q_1 * q_2 )/(R)](https://img.qammunity.org/2021/formulas/physics/college/mu76zwadujtxzo0rvvc66bl88jn5g1vno8.png)
=>
![- (3)/(8) * m *v_0^2 = k * (q_1 * q_2 )/(R) ---(1 )](https://img.qammunity.org/2021/formulas/physics/college/x5pfnrgoyer2dhgogj2fwwy9zkgh9tkb3g.png)
Generally considering from initial position to a position of distance
from the nucleus
Here
represented the distance of the proton from the nucleus where the velocity is
![(1)/(4) v_o](https://img.qammunity.org/2021/formulas/physics/college/31aa7lx2ibtxy8p8a8kr16vb3nx4y6893h.png)
Generally from the law of energy conservation we have that
![\Delta K_f = \Delta P_f](https://img.qammunity.org/2021/formulas/physics/college/cnulcssuub3qablbsezp8kkdyly3o60fp8.png)
Here
is the change in kinetic energy from initial position to a position of distance R from the nucleus , this is mathematically represented as
![\Delta K_f = K_f - K_i](https://img.qammunity.org/2021/formulas/physics/college/1prw67jqiqvb6ml6746g3kqmyvi8y9sc3i.png)
=>
![\Delta K_f = (1)/(2) * m * v_2^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/o75nuxm7tiol8xd3koyy67c4xv1f44s30h.png)
=>
![\Delta K_f = (1)/(2) * m * ((1)/(4) * v_o )^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/7ggdy2e2ye142uucabs20aq2uphcsafchq.png)
=>
![\Delta K_f = (1)/(2) * m * (1)/(16) * v_o ^2 - (1)/(2) * m * v_o^2](https://img.qammunity.org/2021/formulas/physics/college/niyklbas9ngkp5ndn4kpfz44obfv02h0o9.png)
And
is the change in electric potential energy from initial position to a position of distance
from the nucleus , this is mathematically represented as
![\Delta P_f = P_f - P_i](https://img.qammunity.org/2021/formulas/physics/college/ycbl3cj1biy8n09xzqgwgthvjrxaw2iwub.png)
Here
is zero because the electric potential energy at the initial stage is zero so
So
![(1)/(2) * m * (1)/(8) * v_o ^2 - (1)/(2) * m * v_o^2 = k * (q_1 * q_2 )/(R_f )](https://img.qammunity.org/2021/formulas/physics/college/db9exx64mb24qp9dp8pm7fwtb6nwf27ebr.png)
=>
![(1)/(2) * m *v_o^2 [-(15)/(16) ] = k * (q_1 * q_2 )/(R_f )](https://img.qammunity.org/2021/formulas/physics/college/14akyoopdjue7yzcgz0ns7i5b2m22jyrz4.png)
=>
![- (15)/(32) * m *v_o^2 = k * (q_1 * q_2 )/(R_f ) ---(2)](https://img.qammunity.org/2021/formulas/physics/college/ywp1g8rd4qbojj7itrpp0k78s3ajb8ab1x.png)
Divide equation 2 by equation 1
![(- (15)/(32) * m *v_o^2 )/(- (3)/(8) * m *v_0^2 ) } = (k * (q_1 * q_2 )/(R_f ) )/(k * (q_1 * q_2 )/(R ) )}](https://img.qammunity.org/2021/formulas/physics/college/la0v1eqhxoqd283os2vxsx2msqiuoa0292.png)
=>
![-(15)/(32 ) * -(8)/(3) = (R)/(R_f)](https://img.qammunity.org/2021/formulas/physics/college/xzwe0d1223tm4vf30uouv77cv2e3l6c312.png)
=>
![(5)/(4) = (R)/(R_f)](https://img.qammunity.org/2021/formulas/physics/college/8bo4dk4mpvx5b236go95xeut8cok1jmrv6.png)
=>
![R_f = (4)/(5) R](https://img.qammunity.org/2021/formulas/physics/college/f73v6m398u9xakkfwu1gfs6vwj6h00wv3y.png)