Answer:
The equation of the parabola in standard is
![y=x^(2)+5x-1](https://img.qammunity.org/2021/formulas/mathematics/college/m2rrcy029d1apmcx49mcmz4cnuc91wzyel.png)
Explanation:
The standard form equation of the parabola is:
![y=ax^(2)+bx+c](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1o31gzmcvax9lnyomkp38s8tnk0spxu79j.png)
Using the three points we can find a, b and c.
Let's put the first point (0,-1)into the standard form equation.
![-1=a(0)^(2)+b(0)+c](https://img.qammunity.org/2021/formulas/mathematics/college/fnf9ixo5rzwypqzant1vld4voqj2xx8y4i.png)
Using the second point (1,5) and the value of c found above.
![5=a(1)^(2)+b(1)+c](https://img.qammunity.org/2021/formulas/mathematics/college/ea1r49z6cjk7herr0ylclvgcg5luh1gkrx.png)
(1)
Finally using the las point (-1,-5)
![-5=a(-1)^(2)+b(-1)+c](https://img.qammunity.org/2021/formulas/mathematics/college/5tt90o84brdysvwy7r46jk4ep3s8pnqphb.png)
![-5=a-b-1](https://img.qammunity.org/2021/formulas/mathematics/college/65330dbupd10emg2501e3rquoxc2mpa3d5.png)
(2)
Solving the system of equations (1) and (2) we can find a and b.
![-4=a-b](https://img.qammunity.org/2021/formulas/mathematics/college/6feni32xxappfavuv9sj220r9no9g26zgd.png)
Adding both of them we have:
![2=2a](https://img.qammunity.org/2021/formulas/mathematics/college/knqflyqo8txutj9cxpmtrhpru0216b8lu0.png)
![a=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5oxpt0qyc43lnwntseh2gtnbwlxpyz6p09.png)
And b = 5.
Therefore, the equation of the parabola in standard form will be.
![y=x^(2)+5x-1](https://img.qammunity.org/2021/formulas/mathematics/college/m2rrcy029d1apmcx49mcmz4cnuc91wzyel.png)
I hope it helps you!