Answer:
An equation for the nth term of the arithmetic sequence.
![a_n=3n-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/tlmetcaw9ms5cc27xbrarp0el6o2cgz0fc.png)
Explanation:
Given the sequence
2,5,8,11,...
An arithmetic sequence has a constant difference 'd' and is defined by
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
here
computing the differences of all the adjacent terms
- d = 5-2 = 3, d = 8-5=3, d=11-8=3
Using the nth term formula
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e5u60u8wsrdebzmvqawfw4log0ao4iut17.png)
substituting a₁ = 2, d = 3
![a_n=2+\left(n-1\right)3](https://img.qammunity.org/2021/formulas/mathematics/high-school/pro032wkssndwepatm3zq59hwlpucjx9zn.png)
![=2+3n-3](https://img.qammunity.org/2021/formulas/mathematics/high-school/4f71mhc81cqu54qn1dgkon8y3eaiy14pba.png)
![=3n-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/hpcs3bsci48hdtapw3bltk8k6a6f0oj7zs.png)
Thus, an equation for the nth term of the arithmetic sequence.
![a_n=3n-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/tlmetcaw9ms5cc27xbrarp0el6o2cgz0fc.png)