63.3k views
5 votes
For f(x) =4x+1 g(x)=x²-5, find (f•g)(x)​

2 Answers

3 votes

Given :


  • \sf f(x) =4x+1

  • \sf g(x)=x²-5

To Find :


  • \sf (f . g)(x)

Solution :

We know that,


\Large \underline{\boxed{\sf{ (f . g)(x) = f(x) * g(x) }}}

By substituting values :


\sf : \implies (f . g)(x) = (4x+1) * (x^(2) -5)


\sf : \implies (f . g)(x) = 4x(x^(2) -5) +1(x^(2) -5)


\sf : \implies (f . g)(x) = 4x^(3) - 20x + x^(2) -5


\sf : \implies (f . g)(x) = 4x^(3) + x^(2) - 20x -5

Hence, answer is :


\underline{\boxed{\sf{(f . g)(x) = 4x^(3) + x^(2) - 20x - 5}}}

User David Glickman
by
7.3k points
4 votes

Answer:

(f · g)(x) = 4x³ + x² - 20x - 5

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Combining Like Terms
  • Expand by FOIL (First Outside Inside Last)

Explanation:

Step 1: Define

f(x) = 4x + 1

g(x) = x² - 5

(f · g)(x) is f(x)g(x)

Step 2: Find (f · g)(x)

  1. Substitute: (f · g)(x) = (4x + 1)(x² - 5)
  2. Expand [FOIL]: (f · g)(x) = 4x³ - 20x + x² - 5
  3. Combine like terms: (f · g)(x) = 4x³ + x² - 20x - 5
User Hasan Hafiz Pasha
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories