Answer:
f(x) = x^4 - 5x^3 - x^2 + 5x should be the answer
Explanation:
x = 0 1 -1 5
x = 0
x - 1 = 0
x + 1 = 0
x - 5 = 0
f(x) = x (x - 1) (x + 1) (x - 5)
(x - 1) (x - 5) = x(x) - 1(x) - 5(x) - 1(- 5)
x^2 - x - 5x + 5
f(x) = (x^2 - 6x + 5) (x + 1)
x^2(x) - 6x(x) + 5(x) + x^2(1) - 6x(1) + 5(1)
x^3 - 6x^2 + 5x + x^2 - 6x + 5
f(x) = (x^3 - 5x^2 - x + 5) x
x^3(x) - 5x^2(x) - x(x) + 5(x)
f(x) = (x^4 - 5x^3 - x^2 + 5x)