Answer:
![a+2b-d=1](https://img.qammunity.org/2021/formulas/mathematics/college/k1h3kpqu6n1lqosifwar479ycawbxo1d1i.png)
Explanation:
We are given that:
![(ax^2+bx+3)(x+d)=x^3+6x^2+11x+12](https://img.qammunity.org/2021/formulas/mathematics/college/nuyskvby2bqwodebqfq5fu25qcg3m1qai2.png)
And we want to determine:
![a+2b-d](https://img.qammunity.org/2021/formulas/mathematics/college/2sgvm3m03uikcllzpazxhw6h8tem3qswuz.png)
So, we will determine our unknowns first.
We can distribute our expression:
![=(ax^2+bx+3)x+(ax^2+bx+3)d](https://img.qammunity.org/2021/formulas/mathematics/college/iloihfmeiifcx473nbwayy3qypo9d28ely.png)
Distribute:
![=ax^3+bx^2+3x+adx^2+bdx+3d](https://img.qammunity.org/2021/formulas/mathematics/college/i8pfx5nk3vams455i7motdbpqhcsbc6i6y.png)
Rearranging gives:
![=(ax^3)+(bx^2+adx^2)+(bdx+3x)+3d](https://img.qammunity.org/2021/formulas/mathematics/college/561ydtltrm35ce1falty6ip2baxqkwvjc0.png)
Factoring out the variable yields:
![=(a)x^3+(b+ad)x^2+(bd+3)x+d(3)](https://img.qammunity.org/2021/formulas/mathematics/college/3q505x20fuc66ithf2wx0481alu8bxgkw9.png)
Since we know that our expression equals:
![x^3+6x^2+11x+12](https://img.qammunity.org/2021/formulas/mathematics/college/3kca8rnvnkg43c0h04sbh4pfszi2iufxwy.png)
This means that each of the unknown terms in front of each variable corresponds with the coefficient of the resulting equation. Therefore:
![\begin{aligned} a&=1\\ b+ad&=6\\bd+3&=11\\3d&=12\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/rilq33o1wum31vduiqw57w4tur7loys0uo.png)
Solving the first and fourth equation yields that:
![a=1\text{ and } d=4](https://img.qammunity.org/2021/formulas/mathematics/college/s6rf1uteuckfygkwfvaukf4w17u8fvw9q9.png)
Then the second and third equations become:
![b+(1)(4)=6\text{ and } b(4)+3=11](https://img.qammunity.org/2021/formulas/mathematics/college/d74ky9vpz69xzsck0eyjf99ta92q77ik9r.png)
And solving for b now yields that:
![b=2\stackrel{\checkmark}{=}2](https://img.qammunity.org/2021/formulas/mathematics/college/hpgwlidpwqns6p1u21giwiibdeqwk40trv.png)
Therefore, we know that:
![a=1, b=2\text{ and } d=4](https://img.qammunity.org/2021/formulas/mathematics/college/ruoy3g9ydun42mnq5es54fn1l0k246gtwh.png)
For the equation:
![(x^2+2x+3)(x+4)=x^3+6x^2+11x+ 12](https://img.qammunity.org/2021/formulas/mathematics/college/j2ihyau0vvigmrrjhas9n0mkfyyu7b27em.png)
Then the expression:
![a+2b-d](https://img.qammunity.org/2021/formulas/mathematics/college/2sgvm3m03uikcllzpazxhw6h8tem3qswuz.png)
Can be evaluated as:
![=(1)+2(2)-4](https://img.qammunity.org/2021/formulas/mathematics/college/8qbr71n2yxevaad8ic0kvqtg3fpxnpqkv3.png)
Evaluate:
![=1+4-4=1](https://img.qammunity.org/2021/formulas/mathematics/college/4tnat73h25ckg9gi45ndjgh2rh03bk5xd4.png)
Hence, our final answer is 1.