158k views
0 votes
Given that (ax^2 + bx + 3) (x + d) = x^3 + 6x^2 + 11x + 12
a + 2b - d = ?

User Rob King
by
9.1k points

1 Answer

4 votes

Answer:

Let's solve for a.

(ax2+bx+3)(x+d)=x3+6x2+11x+12a+2b−d

Step 1: Add -12a to both sides.

adx2+ax3+bdx+bx2+3d+3x+−12a=x3+6x2+12a+2b−d+11x+−12a

adx2+ax3+bdx+bx2−12a+3d+3x=x3+6x2+2b−d+11x

Step 2: Add -bdx to both sides.

adx2+ax3+bdx+bx2−12a+3d+3x+−bdx=x3+6x2+2b−d+11x+−bdx

adx2+ax3+bx2−12a+3d+3x=−bdx+x3+6x2+2b−d+11x

Step 3: Add -bx^2 to both sides.

adx2+ax3+bx2−12a+3d+3x+−bx2=−bdx+x3+6x2+2b−d+11x+−bx2

adx2+ax3−12a+3d+3x=−bdx−bx2+x3+6x2+2b−d+11x

Step 4: Add -3d to both sides.

adx2+ax3−12a+3d+3x+−3d=−bdx−bx2+x3+6x2+2b−d+11x+−3d

adx2+ax3−12a+3x=−bdx−bx2+x3+6x2+2b−4d+11x

Step 5: Add -3x to both sides.

adx2+ax3−12a+3x+−3x=−bdx−bx2+x3+6x2+2b−4d+11x+−3x

adx2+ax3−12a=−bdx−bx2+x3+6x2+2b−4d+8x

Step 6: Factor out variable a.

a(dx2+x3−12)=−bdx−bx2+x3+6x2+2b−4d+8x

Step 7: Divide both sides by dx^2+x^3-12.

a(dx2+x3−12)

dx2+x3−12

=

−bdx−bx2+x3+6x2+2b−4d+8x

dx2+x3−12

a=

−bdx−bx2+x3+6x2+2b−4d+8x

dx2+x3−12

Answer:

a=

−bdx−bx2+x3+6x2+2b−4d+8x/

dx2+x3−12

Explanation:

User Akos Lukacs
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories