85.0k views
18 votes
Find the derivative of y = x^3/2.

Find the derivative of y = 1/x^3.
Find the derivative of y = 1/√x.


1 Answer

3 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ( {x}^{ (3)/(2) } )= (3)/(2) √(x)


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ {x}^(3) } \bigg)= \cfrac{- 3}{ {x}^(4) }


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ √(x)^{} } \bigg)= \cfrac{ - 1}{ 2\sqrt{{x}^{ { 3}{} } }}

____________________________________


\large \tt Solution \: :

properties to be used here :


\qquad \tt \rightarrow \:\cfrac{d}{dx}( {x}^( n ) ) = n \sdot{x}^(n - 1)


\large \textsf{Question : 1}


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ( {x}^{ (3)/(2) } )


\qquad \tt \rightarrow \:y = (3)/(2) x { }^{ (3)/(2) - 1 }


\qquad \tt \rightarrow \:y = (3)/(2) x { }^{ (3 - 2)/(2) }


\qquad \tt \rightarrow \:y = (3)/(2) x { }^{ (1)/(2) }


\qquad \tt \rightarrow \:y = (3)/(2) √(x)


\large \textsf{Question : 2}


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ {x}^(3) } \bigg)


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ({ {x}^( - 3) } )


\qquad \tt \rightarrow \:y = - 3 { {x}^( - 3 - 1) }


\qquad \tt \rightarrow \:y = - 3 { {x}^( - 4) }


\qquad \tt \rightarrow \:y = \cfrac{- 3}{ {x}^(4) }


\large \textsf{Question : 3}


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{ √(x)^{} } \bigg)


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} \bigg( \cfrac{1}{{x}^{ (1)/(2) } } \bigg)


\qquad \tt \rightarrow \:y = \cfrac{d}{dx} ({ {x}^{ - (1)/(2) } } )


\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ - (1)/(2) - 1} }


\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ ( - 1 - 2)/(2) } }


\qquad \tt \rightarrow \:y = -\cfrac{1}{2} { {x}^{ ( - 3)/(2) } }


\qquad \tt \rightarrow \:y = \cfrac{ - 1}{ 2{x}^{ ( 3)/(2) } }


\qquad \tt \rightarrow \:y = \cfrac{ - 1}{ 2\sqrt{{x}^{ { 3}{} } }}

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Philwb
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories