62.6k views
4 votes
The answer to my question.

The answer to my question.-example-1

1 Answer

3 votes

Answer:

145°

Explanation:

As per the given information: quadrilateral ABCD is a parallelogram.


m\angle B + m\angle DCB =180\degree \\

(adjacent angles of a parallelogram)


110\degree + m\angle DCB =180\degree \\</p><p> m\angle DCB =180\degree - 110\degree \\</p><p> m\angle DCB =70\degree\\</p><p>m\angle DCG=(1)/(2) m\angle DCB \\(\because GC \: bisects \: \angle DCB) \\</p><p>m\angle DCF=(1)/(2)* 70\degree... (\because C-G-F) \\</p><p>m\angle DCF=35\degree\\</p><p></p><p>m\angle BFC = m\angle DCF = 35\degree\\ (Alternate \: \angle s) \\\\</p><p>m\angle BFC + m\angle CFA = 180\degree\\ (straight \: line \: \angle s) \\\\</p><p>35\degree + m\angle CFA= 180\degree\\</p><p>m\angle CFA = 180\degree-35\degree \\\\</p><p>m\angle CFA= 145\degree \\\\</p><p>\huge\purple {\therefore m\angle GFA = 145\degree} \\(\because C-G-F) \\

User Thousight
by
4.2k points