Answer:
w= 27.47 degree
x=9.99 cm
y=12.02 cm
Explanation:
The value of w:
In a right-angled triangle
![\tan \theta = \frac {\text{Perpendicular}}{\text{Base}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/qu9e8lrssvvmd0jjde4gbazfscz5iicly6.png)
![\tan w = \frac {\text{Perpendicular}}{25+9}\;and \; \tan 63 = \frac {\text{Perpendicular}}{9}](https://img.qammunity.org/2021/formulas/mathematics/high-school/j1ype104kxv728qktittstbfequt0iulid.png)
So,
![34 \tan w = 9\tan (63)](https://img.qammunity.org/2021/formulas/mathematics/high-school/by8oubomr9ja34ut9f7w5we2quimeasxdv.png)
![\tan w = (9/34)\tan(63)=0.52 \\\\w=\tan^(-1)(0.52) \\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8iuana324t88kdpmpat8ezwikw3779hdr.png)
w= 27.47 degree
The value of x:
In a right-angled triangle
![\sin \theta = \frac {\text{Perpendicular}}{\text{Hypotaneous}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/3z7c08y8mr2x6jm3sdppy89bxboi469c6c.png)
sin (27) =x/22
x= 22sin(27)
x=9.99 cm
The value of y:
By using Pythagoras theorem,
![y^2+y^2=17^2 \\\\2y^2 = 289 \\\\y^2 =289/2= 144.5 \\\\y=\sqrt {144.5} \\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/vn419fj0p6j9nkgxkdjv24g4jg9m7n8ily.png)
y=12.02 cm