109k views
2 votes
Solve this help me

It is the question of class 10 Maths​​

Solve this help me It is the question of class 10 Maths​​-example-1
User Egle
by
7.7k points

1 Answer

3 votes

Answer:


x = \left ( \frac{ \left (3 ^{(2)/(3) } + 1 \right ) ^2}{3 ^{(2)/(3) } } \right )^{(1)/(2) } =\frac{ 3 ^{(2)/(3) } + 1 }{3 ^{(1)/(3) } }


(9 \cdot x + 10)/(3) = \left ( \frac{ 3 ^{(2)/(3) } + 1 }{3 ^{(1)/(3) } } \right )^3 } = x^3

Therefore;


x = \sqrt[3]{(9 \cdot x + 10)/(3)}

Explanation:

Given that we have;


x^2 - 2 = 3 ^{(2)/(3) } + 3 ^{-(2)/(3) }


x^2 = 3 ^{(2)/(3) } + 3 ^{-(2)/(3) } + 2 = \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } = 3 ^{-(2)/(3) } * \left ( 3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) } \right )


x^2 = 3 ^{-(2)/(3) } * \left ( 3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) } \right )


x = 3 ^{-(1)/(3) } * \left ( 3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) } \right )^{(1)/(2) }


x = \sqrt{ \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } } = \left ( \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } \right )^{(1)/(2) }


x = \sqrt{ \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } } = \left ( \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } \right )^{(1)/(2) } = \left ( \frac{3 ^{(4)/(3) } + 2 * 3 ^{(2)/(3) } + 1}{3 ^{(2)/(3) } } \right )^{(1)/(2) }


x = \sqrt{ \frac{3 ^{(4)/(3) } + 1 + 2 * 3 ^{(2)/(3) }}{3 ^{(2)/(3) } } } = \left ( \frac{3 ^{(4)/(3) } + 2 * 3 ^{(2)/(3) } + 1}{3 ^{(2)/(3) } } \right )^{(1)/(2) } = \left ( \frac{ \left (3 ^{(2)/(3) } + 1 \right ) ^2}{3 ^{(2)/(3) } } \right )^{(1)/(2) }


x = \left ( \frac{ \left (3 ^{(2)/(3) } + 1 \right ) ^2}{3 ^{(2)/(3) } } \right )^{(1)/(2) } =\frac{ 3 ^{(2)/(3) } + 1 }{3 ^{(1)/(3) } }


(9 \cdot x + 10)/(3) = 3 \cdot x + (10)/(3) = 3 * \frac{ 3 ^{(2)/(3) } + 1 }{3 ^{(1)/(3) } } +(10)/(3) = \frac{ 3 ^{(5)/(3) } + 3 }{3 ^{(1)/(3) } } + (10)/(3)= \frac{ 3 ^{(7)/(3) } + 3 ^{(2)/(3) }*3+ 10 }{3 } } }


(9 \cdot x + 10)/(3) =\frac{ 3 ^{(7)/(3) } + 3 ^{(2)/(3) }*3+ 10 }{3 } } } = \frac{ 3 ^{(7)/(3) } + 3 ^{(5)/(3) }+ 10 }{3 } } } = \left ( \frac{ 3 ^{(2)/(3) } + 1 }{3 ^{(1)/(3) } } \right )^3 } = x^3

Therefore;


x^3 = (9 \cdot x + 10)/(3)


x = \sqrt[3]{(9 \cdot x + 10)/(3)}

User Langkilde
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories