The sled accelerates with magnitude
such that
![\left(2.3(\rm m)/(\rm s)\right)^2 = 2a(9.2\,\mathrm m) \implies a = 0.2875(\rm m)/(\mathrm s^2)](https://img.qammunity.org/2023/formulas/physics/college/uct6g68z4fzf5jgyock1wy26dopa2yvth1.png)
By Newton's second law, the net force in the plane of motion (parallel to the ground) is
![31\,\mathrm N - F_(\rm friction) = (17 \,\mathrm{kg}) \left(0.2875 (\rm m)/(\mathrm s^2)\right)](https://img.qammunity.org/2023/formulas/physics/college/trbcu7otb7mjvupygkru3ea3awagw0ttjs.png)
so that the force of friction exerts a magnitude of
![F_(\rm friction) = 26.1125 \,\mathrm N](https://img.qammunity.org/2023/formulas/physics/college/mchynsqppxroph9gdh48ypgy6hgy70x8qp.png)
Perpendicular to the ground, the sled is in equilibrium, so Newton's second law says
![F_(\rm normal) - (17\,\mathrm{kg})g = 0 \implies F_(\rm normal) = 166.6 \,\mathrm N](https://img.qammunity.org/2023/formulas/physics/college/5ki1rux27qc3xq0f283mj3z60a3mjntd9l.png)
The magnitude of friction is proportional to the magnitude of the normal force by a factor of
, the coefficient of kinetic friction. It follows that
![F_(\rm friction) = \mu_k F_(\rm normal) \implies \mu_k = (26.1125\,\rm N)/(166.6\,\rm N) \approx \boxed{0.16}](https://img.qammunity.org/2023/formulas/physics/college/7omlsmtioggix1a72bdf8pyg9mb19pojve.png)
(and the coefficient is dimensionless).