101k views
1 vote
Integrate: log(ax+b)/(ax+b) dx​

User CQP
by
6.8k points

1 Answer

5 votes

Answer:


(1)/(2a) \bigg[log(ax + b) \bigg]^(2) + c

Explanation:


\int (log(ax + b))/((ax + b)) dx \\ \\ let \: log(ax + b) = t \\ \\ (1)/((ax + b)) .a \: dx = dt \\ \\ (1)/((ax + b)) \: dx = (1)/(a) dt \\ \\ \therefore \: \int (log(ax + b))/((ax + b)) dx = \int t. (1)/(a) dt \\ \\ = (1)/(a) \int t. dt \\ \\ = (1)/(a) * \frac{ {t}^(2) }{2} + c \\ \\ = (1)/(2a) \bigg[log(ax + b) \bigg]^(2) + c \\ \\ \purple{ \bold{\therefore \: \int (log(ax + b))/((ax + b)) dx = (1)/(2a) \bigg[log(ax + b) \bigg]^(2) + c}}

User Jd Baba
by
7.2k points