123k views
13 votes
How do I find dy/dx of the following?

How do I find dy/dx of the following?-example-1
User Mahir
by
8.9k points

1 Answer

4 votes

Answer:


\displaystyle(dy)/(dx) \ = \ 3x^(2) \ + \ \displaystyle\frac{1}{2\sqrt{x^(3)}} \ - \ \displaystyle(12)/(x^(5))

Explanation:


y \ = \ x^(3) \ - \ \displaystyle(1)/(√(x)) \ + \ \displaystyle(3)/(x^(4)) \\ \\ y \ = \ x^(3) \ - \ x^{-(1)/(2)} \ + \ 3x^(-4) \\ \\ \displaystyle(dy)/(dx) \ = \ 3x^(3 \ - \ 1) \ - \ \left(-\displaystyle(1)/(2)\right)x^{-(1)/(2) \ - \ 1} \ + \ \left(-4 \ * \ 3\right)x^(-4-1)


\displaystyle(dy)/(dx) \ = \ 3x^(2) \ + \ \displaystyle(1)/(2)x^{-(3)/(2)} \ - \ 12x^(-5) \\ \\ \displaystyle(dy)/(dx) \ = \ 3x^(2) \ + \ \displaystyle\frac{1}{2\sqrt{x^(3)}} \ - \ \displaystyle(12)/(x^(5))

User RNA
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories