67.4k views
3 votes
• Let f be a function such that f(-2) = 8 and f'(-2) = 4.

• Let h be the function h(x) = x3.
Evaluate
d f(x)
dx h(x)
at x = -2.
Show Calculator

• Let f be a function such that f(-2) = 8 and f'(-2) = 4. • Let h be the function-example-1

1 Answer

5 votes

Answer:

-2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Derivatives

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule:
(d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define


(d)/(dx) [(f(x))/(h(x)) ] \ at \ x = -2\\h(x) = x^3\\f(-2) = 8\\f'(-2) = 4

Step 2: Differentiate

  1. Differentiate [Quotient Rule]:
    (d)/(dx) [(f(x))/(h(x)) ] = (f'(x)h(x) - f(x)h'(x))/(h(x)^2)
  2. Differentiate h(x) [Basic Power]: h'(x) = 3x²

Step 3: Evaluate

  1. Define differential:
    (f'(x)x^3 + f(x)[3x^2])/((x^3)^2)
  2. Substitute in variables:
    (f'(-2)h(-2) + f(-2)h'(-2))/(h(-2)^2)
  3. Substitute in variables:
    (4(-2)^3 - 8[3(-2)^2])/([(-2)^3]^2)
  4. Evaluate: -2
User Justinxreese
by
4.7k points