Answer:
Radius = 4 cm
Area = 16π cm²
Volume = 240π cm³
Explanation:
Radius of the given cylinder =
![\frac{\text{diameter of the circular base}}{2}](https://img.qammunity.org/2021/formulas/mathematics/college/pkxokvzim1s5ik9q30a7m6ziib64wvadnh.png)
=
![(d)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ylu6ff6jppgchbuk6zhhrtj1tdam1upkam.png)
=
![(8)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lsyvaa70o291fcxelh1ypoqqkmxracjd44.png)
= 4 cm
Area of the circular base =
![\pi r^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vmi45gdputitfb8ib60mwxbg9hlj7cclys.png)
Here 'r' = radius of the circular base
Area of the base =
![\pi (4)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/6qvbqxi2tw5axe6wrjkle17sljqc3cffms.png)
= 16π cm²
Volume of a cylinder is given by the formula,
V = πr²h
Here 'r' = radius of the circular base
h = height of the cylinder
By substituting the values in the formula,
V = π(4)²(15)
= 240π cm³