We know that ,
![\sin( \alpha ) = (opposite)/(hypotenuse)](https://img.qammunity.org/2021/formulas/mathematics/college/keecckco9w3xyq43kr4oblss7p130edu4f.png)
and
![\cos( \alpha ) = (adjacent)/(hypotenuse)](https://img.qammunity.org/2021/formulas/mathematics/college/q9j3fd7qm5xut1le5nmpb5qion2zpga9y0.png)
where 'alpha' is an angle of triangle ; 'opposite' denotes the side opposite to alpha & 'adjacent' refers to the side next to the angle (but not hypotenuse)
Similarly ,
![\sin(q) = (opposite)/(hypotenuse) = (4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/13zeua57179qm61xz2d7pbyc0vp20pfy19.png)
Let the length of the opposite side be 4x and the length of hypotenuse be 5x. By using Pythagorean Theorem , we can find the length of base.
![{base}^(2) + {(4x)}^(2) = {(5x)}^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/82f0mmu1s3f7r3pg53rs7g0clzxxaad5st.png)
![= > {base}^(2) = 25 {x}^(2) - 16 {x}^(2) = 9 {x}^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/kwd133yhlw51op78vbzai3ji44erh6rj74.png)
![= > base = \sqrt{9 {x}^(2) } = 3x](https://img.qammunity.org/2021/formulas/mathematics/college/sxeh4ckuiadembdu58k3mjch9ddpoafeky.png)
Now , we have got the length of all the sides of the triangle. So,
![\cos(q) = (adjacent)/(hypotenuse) = (3x)/(5x) = (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/opjqlm2xr5xcx2mj1sxr3m4plzjfx2ipvn.png)
and
![\cos(p) = (adjacent)/(hypotenuse) = (4x)/(5x) = (4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/mgr2khh03hi5nmj3hnj4ut03rikuorvkk5.png)
So,
![\cos(p) + \cos(q) = (4)/(5) + (3)/(5) = (7)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/y2m2p4i0f2nvx40hun79710fk0atr6j5yo.png)