48.0k views
15 votes
The Pythagorean Identity states that: (sin x)^2 + (cos x)^2 = 1

Given cos 0 = 5/3, find sin 0

sin 0 = ?/?

Simplify the fraction.

The Pythagorean Identity states that: (sin x)^2 + (cos x)^2 = 1 Given cos 0 = 5/3, find-example-1
User Arkku
by
4.1k points

1 Answer

10 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:sin(\theta) = \cfrac{2}{3}

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: \cos {}^(2) ( \theta) + \sin {}^(2) ( \theta) = 1


\qquad \tt \rightarrow \: {\bigg( \cfrac{ √(5)}{3} \bigg) }^(2) + \sin {}^(2) ( \theta) = 1


\qquad \tt \rightarrow \: \cfrac{5}{9} + \sin {}^(2) ( \theta) = 1


\qquad \tt \rightarrow \: \sin {}^(2) ( \theta) = 1 - \cfrac{5}{9}


\qquad \tt \rightarrow \: \sin {}^(2) ( \theta) = \cfrac{9 - 5}{9}


\qquad \tt \rightarrow \: \sin {}^(2) ( \theta) = \cfrac{4}{9}


\qquad \tt \rightarrow \: \sin {}^{} ( \theta) = \sqrt \cfrac{4}{9}


\qquad \tt \rightarrow \: \sin {}^{} ( \theta) = \pm \cfrac{2}{3}

Generally, only positive value is taken :


\qquad \tt \rightarrow \: \sin {}^{} ( \theta) = \cfrac{2}{3}

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User WestHamster
by
3.5k points