Answer:
d. 127 g/mol.
Step-by-step explanation:
Hello!
In this case, since we have the amount of molecules of this this compound, we are able to compute the moles out there by using the Avogadro's number:

Which correspond to the moles of X2. Then, by using the mass we are able to compute the molar mass of X2:

It means that the atomic mass of X halves the molar mass of X2, which is then d. 127 g/mol.
Best regards!