Answer:
(2,-17) should be the minimum.
Explanation:
The minimum of a quadratic function occurs at
. If a is positive, the minimum value of the function is
![f(-(b)/(2a))](https://img.qammunity.org/2021/formulas/mathematics/high-school/q9eis1qingxv0uc4at8uw38fysnwv9iyyg.png)
occurs at
![x=-(b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ngvnizb9ug25fs3h5o9o3gzn5xs1je6dxb.png)
Find the value of
![x=-(b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ngvnizb9ug25fs3h5o9o3gzn5xs1je6dxb.png)
x = 2
evaluate f(2).
replace the variable x with 2 in the expression.
![f(2)=5(2)^2-20(2)+3](https://img.qammunity.org/2021/formulas/mathematics/high-school/892pp2kssokr27y3zww8nae44l6phria1e.png)
simplify the result.
![f(2)=5(4)-20(2)+3](https://img.qammunity.org/2021/formulas/mathematics/high-school/x4q1b8ldsrief4j2nduuvrqnhxk0it7t34.png)
![f(2)=20-40+3](https://img.qammunity.org/2021/formulas/mathematics/high-school/crz6qajvnq7pu9dlyncpmr26ywq1ns7oq3.png)
![f(2)=-17](https://img.qammunity.org/2021/formulas/mathematics/high-school/ux53ac5g38vt3s2w5ljb9cy6v0u6z9d3u2.png)
The final answer is -17
Use the x and y values to find where the minimum occurs.
HOPE THIS HELPS!