Answer:
A). PR = 16.13 ft
B). QR = 9.64 ft
Step-by-step explanation:
Part (A).
From the figure attached,
ΔPQR is a right triangle,
m(PQ) = 14 ft
m(QR) = 8 ft
By applying Pythagoras theorem,
Hypotenuse² = (Leg 1)² + (Leg 2)²
(PR)² = (PQ)² + (QR)²
(PR)² = (14)² + (8)²
PR = √260
= 16.125
≈ 16.13 ft
Part (B).
If PR = 17 feet
and PQ = 14 feet
By applying Pythagoras theorem in ΔPQR,
PR² = PQ² + QR²
(17)² = (14)² + (QR)²
(QR)² = 289 - 196
QR = √93
= 9.644
≈ 9.64 ft