Answer:
The apparent depth d = 19.8495 cm
Step-by-step explanation:
The equation for apparent depth can be expressed as:
![d = \frac{d_1} {\mu_1}+\frac {d_2}{\mu_2}](https://img.qammunity.org/2021/formulas/physics/college/b4lcoga3asem18fi5vq36bwz83t3yoz0gx.png)
here;
![d_1 = d_2 = 15 \ cm](https://img.qammunity.org/2021/formulas/physics/college/wyj6si2uhg8s1kouvaqpiho0g8bu9hdznd.png)
= refractive index in the first liquid = 1.75
= refractive index in the second liqquid= 1.33
∴
![d = (15)/(1.75)+(15)/(1.33)](https://img.qammunity.org/2021/formulas/physics/college/tf3gs76yhdrfnyhngsazu76smb8m39m7di.png)
![d = 15( (1)/(1.75)+(1)/(1.33))](https://img.qammunity.org/2021/formulas/physics/college/kgq8u7xmy2luz590c9id8fisao21go8iy7.png)
![d = 15( 0.5714 +0.7519)](https://img.qammunity.org/2021/formulas/physics/college/ibg6prcvoglpfoj0t81vkz1xppmchbzao5.png)
d = 15(1.3233 ) cm
d = 19.8495 cm