384,506 views
12 votes
12 votes
Which expression could help you find the distance

between (10, 4) and (-6, 4)?
O [10] +1-41
O 1101 +141
O 1-61 +141
O |10| +-61

User Maxime G
by
2.8k points

1 Answer

15 votes
15 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }

Correct Expression :


\qquad \tt \rightarrow \: |10| + | - 6|


\qquad \tt \rightarrow \: distance = 16\:\: units\degree

____________________________________


\large \tt Solution \: :


\textsf{Using distance formula -}


\qquad \tt \rightarrow \: \sqrt{(x_2 - x_1) {}^(2) + (y_2 - y_1) {}^(2) }


\qquad \tt \rightarrow \: \sqrt{( - 6 - 10) {}^(2) + (4 - 4) {}^(2) }


\qquad \tt \rightarrow \: \sqrt{( - 16) {}^(2) + 0}


\qquad \tt \rightarrow \: √(256)


\qquad \tt \rightarrow \: 16 \: \: units

For short it can be expressed as :


\qquad \tt \rightarrow \: |10| + | - 6| = 10 + 6 = 16

[ y - coordinate of both the points are same ]

Correct option - D

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Michal Ciechan
by
3.0k points