Answer:
![\left|x-3\right|<5\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-2<x<8\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-2,\:8\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/yti4edq46xi1mwdxi9yoesvojgx663v3y9.png)
The graph is also attached.
Explanation:
Given the expression
![|x-3|\:<\:5](https://img.qammunity.org/2021/formulas/mathematics/high-school/iy4wzdknfsa2ky0bl934lk8yhgv61yntcz.png)
Apply absolute rule:
![\mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a](https://img.qammunity.org/2021/formulas/mathematics/high-school/427iud1os7xs8mwkyzgc54hxsq9glbobw0.png)
so the expression becomes
![-5<x-3<5](https://img.qammunity.org/2021/formulas/mathematics/high-school/ezmv6nyrbaovcelpm4ie0zmu0pbw9tn5dy.png)
![x-3>-5\quad \mathrm{and}\quad \:x-3<5](https://img.qammunity.org/2021/formulas/mathematics/high-school/7u9xwtwcz8c0enxf69r8f34vg6o5gbkyfv.png)
solving condition 1
x−3<5
Add 3 to both sides
x−3+3<5+3
x<8
solving condition 2
x−3>−5
Add 3 to both sides
x−3+3>−5+3
x>−2
combining the intervals
![x>-2\quad \mathrm{and}\quad \:x<8](https://img.qammunity.org/2021/formulas/mathematics/high-school/3442xxj4afldwfgv8imou4qyln9r35phzv.png)
Merging overlapping intervals
![-2<x<8](https://img.qammunity.org/2021/formulas/mathematics/high-school/brxwvgiw0jtpdje3ujxkxokkndr331ocpy.png)
Therefore,
![\left|x-3\right|<5\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-2<x<8\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-2,\:8\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/yti4edq46xi1mwdxi9yoesvojgx663v3y9.png)
The graph is also attached.