The flux of
is given by the surface integral
![\displaystyle \iint_S \vec E \cdot d\vec\sigma](https://img.qammunity.org/2023/formulas/physics/college/fj8b5bag0wb0zdcf7vhmdjr6dnf08v9wa0.png)
where
is the given square region, which we can parameterize by
![\vec s(x, z) = x\,\vec\imath + z\,\vec k](https://img.qammunity.org/2023/formulas/physics/college/hj8ot14w72zljen94x01pmxss315k6atn9.png)
with
and
. The area element is
![d\vec\sigma = \vec n \, dx\,dz](https://img.qammunity.org/2023/formulas/physics/college/mwq96cipgdwatqdj7ukj1xoub8y0ahijpe.png)
where
is the normal vector to
. Depending on the orientation of
, this vector could be
![\vec n = (\partial\vec s)/(\partial x) * (\partial\vec s)/(\partial z) = -\vec\jmath](https://img.qammunity.org/2023/formulas/physics/college/etx657lop5g74b5tcdwes8kkvj9jr4nw9u.png)
or
; either way, the integral reduces to
![\displaystyle \iint_S \vec E \cdot d\,\vec\sigma = \int_0^1 \int_0^1 (-x\,\vec\imath + z\,\vec k) \cdot (\pm\vec\jmath) \, dx\,dz = \boxed{0}](https://img.qammunity.org/2023/formulas/physics/college/t1h2jiiu06kgzn23v9zhcx4zqv8t9w2b6k.png)