Answer:
Max Value: x = 400
General Formulas and Concepts:
Algebra I
- Domain is the set of x-values that can be inputted into function f(x)
Calculus
- Antiderivatives
- Integral Property:
![\int {cf(x)} \, dx = c\int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/xh7vzq6novuia6aw7ijkkktjb23ddpky0b.png)
- Integration Method: U-Substitution
- [Integration] Reverse Power Rule:
![\int {x^n} \, dx = (x^(n+1))/(n+1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/6w1pkzcmkud23i81x1mw7i3qrdvad46i2w.png)
Explanation:
Step 1: Define
![f(x) = (1)/(√(800-2x) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/ilplxsetk7vf7oa3cztu3v0cf56w7sklva.png)
Step 2: Identify Variables
Using U-Substitution, we set variables in order to integrate.
![u = 800-2x\\du = -2dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/mkdmaky3w0rfcwiif0gq77286wo0vwycri.png)
Step 3: Integrate
- Define:
![\int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/o0vxwddeurb76tv0yhwrzgvt9u069w3xse.png)
- Substitute:
![\int {(1)/(√(800-2x) ) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/x4v0bsvk3aid7o9l9za65rqxc0ed4jqtu0.png)
- [Integral] Int Property:
![-(1)/(2) \int {(-2)/(√(800-2x) ) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/1pw6qce5041l3ocsvfwklkmjgi29fd6jfg.png)
- [Integral] U-Sub:
![-(1)/(2) \int {(1)/(√(u) ) } \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/fwv6zy85la8bwya8bpschrmgr7yyy1s6c7.png)
- [Integral] Rewrite:
![-(1)/(2) \int {u^{-(1)/(2) }} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/8mgiizv9eaudzbngqh65fmspbnnom89rbz.png)
- [Integral - Evaluate] Reverse Power Rule:
![-(1)/(2)(2√(u)) + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/71jif5gdjq3cbogoucmp8cjh3k8xu832m6.png)
- Simplify:
![-√(u) + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/yvft6frrfpv2ebljavsspogkke2p15yzpj.png)
- Back-Substitute:
![-√(800-2x) + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/qfcfp5snzum0cbpgz2vfclkjt969c4zdu0.png)
- Factor:
![-√(-2(x - 400)) + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/sfvekci5m3wog8t863sgq5cd2wth7ivrfi.png)
Step 4: Identify Domain
We know from a real number line that we cannot have imaginary numbers. Therefore, we cannot have any negatives under the square root.
Our domain for our integrated function would then have to be (-∞, 400]. Anything past 400 would give us an imaginary number.