Answer:
The two values of x are 2n*pi + pi/12 and 2n*pi -5pi/12
Step-by-step explanation:
The given equation is
Sin x +√3 Cosx= √2
Upon dividing the equation by 2 we get
![(1)/(2)Sinx + (√(3) )/(2)Cosx = (√(2) )/(2)](https://img.qammunity.org/2021/formulas/engineering/college/czw9tjsa12w888jp2tpj66b950j1h6uu4p.png)
Sin(
)*Sinx + Cos(
)*Cosx =
![(1)/(√(2) )](https://img.qammunity.org/2021/formulas/physics/middle-school/4gvuz608q2ocxh3wd1pmlxmkik6blw93zi.png)
This makes the formula of
CosACosB + SinASinB = Cos(A-B)
Cos(x-
) =
![(1)/(√(2) )](https://img.qammunity.org/2021/formulas/physics/middle-school/4gvuz608q2ocxh3wd1pmlxmkik6blw93zi.png)
cos(x- pi/6) = cos(pi/4)
upon writing the general equation we get
x-pi/6 = 2n*pi ± pi/4
x = 2n*pi ± pi/4 -pi/6
so we will have two solutions
x = 2n*pi + pi/4 -pi/6
= 2n*pi + pi/12
and
x = 2n*pi - pi/4 -pi/6
= 2n*pi -5pi/12
Therefore the two values of x are 2n*pi + pi/12 and 2n*pi -5pi/12.