228k views
3 votes
Derivative of (a^x/Log a)?​

User Kliment Ru
by
7.6k points

2 Answers

1 vote

Answer:

a^x.

Explanation:

y = a^x / log a

Assuming the log is to the base e:

y = (1/ log a) * a^x

Derivative of a^x:

Let u = a^x

log u = log a^x

log u = x log a

1/u * du/dx = log a

du/dx = = u * log a

y = (1 / log a) * u

so dy/du = 1/log a

and dy/dx = dy/du * du/dx

= (1/log a )* log a u

= u

= a^x.

User Double M
by
7.3k points
5 votes


\large\bold{\underline{\underline{To \: \: Differentive:-}}}


\sf{(a^x)/(log(a)) }

(OR)


\sf{(a^x)/(ln(a)) }


\large\bold{\underline{\underline{Solution:-}}}


\sf{Let\ y=(a^x)/(ln(a)) }


\sf{=(d)/(dx)\bigg[(a^x)/(ln(a)) \bigg] }

(Linear differentiation)


\sf{=(1)/(ln(a)).(d)/(dx)(a^x) }


\sf{=(ln(a)a^x)/(ln(a)) }


\boxed{\sf{=a^x}}


\large\bold{\underline{\underline{Applied:-}}}

✭ Linear differentiation


\sf{[a.b(x)+c.d(x)]'=a.b'(x)+c.d'(x)}

✭ Exponential function rule


\sf{(a^x)'=ln(a).a^x}

User Nickson
by
7.3k points