466,825 views
32 votes
32 votes
Given: NQ is the bisector of ZMNP and ZNMQ

ZNPQ
Prove: Δ MNQ =ΔΡΝΟ
M
N
Q
P

Given: NQ is the bisector of ZMNP and ZNMQ ZNPQ Prove: Δ MNQ =ΔΡΝΟ M N Q P-example-1
User Dustbuster
by
2.7k points

1 Answer

10 votes
10 votes

1)
\overline{NQ} is the bisector of
\angle MNP and
\angle NMQ \cong \angle NPQ (given)

2)
\angle MNQ \cong \angle QNP (a bisector splits an angle into two congruent angles)

3)
\overline{NQ} \cong \overline{NQ} (reflexive property)

4)
\triangle MNQ \cong \triangle PNQ (AAS)

User Tetsuo
by
3.1k points