Answer:
Perimeter = 31.12
Explanation:
The perimeter of the shape JKLM will be expressed as;
Perimeter = JK + JL + JM + KL + KM + LM
Using the formula for calculating the distance between two points;
D = √(x2-x1)²+(y2-y1)²
For JK where J(-4,2) and K(1,2)
JK = √(1+4)²+(2-2)²
JK = √5²
JK =√25
JK = 5
For JK where J(-4,2) and L(2,-2)
JL = √(2+4)²+(-2-2)²
JL = √6²+(-4)²
JL =√36+16
JL = √52
For JM where J(-4,2) and M(-3,-2)
JM = √(-3+4)²+(-2-2)²
JM = √1²+(-4)²
JM =√1+16
JM = √17
For KL where K(1,2), L(2,-2)
KL = √(2-1)²+(-2-2)²
KL = √1²+(-4)²
KL =√1+16
KL = √17
For KL where K(1,2), M(-3,-2)
KM = √(-3-1)²+(-2-2)²
KM = √4²+(-4)²
KM = √16+16
KM = √32
KM = 4√2
For KL where L(2,-2) and M(-3,-2)
LM = √(-3-2)²+(-2+2)²
LM = √(-5)²+(0)²
LM = √25
LM = 5
Perimeter = 5 + 4√2 + √17 + √17 + 5 + √52
Perimeter = 10 + 4√2 + 2√17 + √52
Perimeter = 10+5.66+8.25+7.21
Perimeter = 31.12