10.8k views
3 votes
[4] 7. Find f if
f"(x) = x^2+ sin x
f'(0) = 2
f(0) =4

1 Answer

4 votes

Answer:


f(x) = (x^4)/(12) - sin(x) + 3x + 4

General Formulas and Concepts:

Calculus

  • Antiderivatives
  • Integration Constant C
  • [Int Rule] Reverse Power Rule:
    \int {x^n} \, dx = (x^(n+1))/(n+1) + C
  • Integration Property 1:
    \int {cf(x)} \, dx = c\int {f(x)} \, dx
  • Integration Property 2:
    \int {f(x)+g(x)} \, dx = \int {f(x)} \, dx + \int {g(x)} \, dx

Explanation:

Step 1: Define

f"(x) = x² + sin(x)

Condition f'(0) = 2

Condition f(0) = 4

Step 2: Integrate Pt. 1

  1. Set up:
    f'(x) = \int {f
  2. Substitute:
    f'(x) = \int [{x^2 + sin(x)}] \, dx
  3. Rewrite [Int Property 2]:
    f'(x) = \int {x^2} \, dx + \int {sin(x)} \, dx
  4. Integrate [Reverse Power Rule/Trig]:
    f'(x) = (x^3)/(3) - cos(x) + C

Step 3: Find f'(x)

Use the given condition to find the differential equation.

  1. Substitute:
    f'(0) = (0^3)/(3) - cos(0) + C
  2. Substitute:
    2 = (0^3)/(3) - cos(0) + C
  3. Evaluate:
    2 = 0 - 1 + C
  4. Solve:
    3 = C
  5. Define:
    f'(x) = (x^3)/(3) - cos(x) + 3

Step 4: Integrate Pt. 2

  1. Set up:
    f(x) = \int {f'(x)} \, dx
  2. Substitute:
    f(x) = \int [{(x^3)/(3) - cos(x) + 3}] \, dx
  3. Rewrite [Int Property 2]:
    f(x) = \int {(x^3)/(3) } \, dx + \int {-cos(x)} \, dx + \int {3} \, dx
  4. Rewrite [Int Property 1]:
    f(x) = (1)/(3) \int {x^3} \, dx - \int {cos(x)} \, dx + \int {3} \, dx
  5. Integrate {Reverse Power Rule/Trig]:
    f(x) = (1)/(3)((x^4)/(4) ) - sin(x) + 3x + C
  6. Simplify:
    f(x) = (x^4)/(12) - sin(x) + 3x + C

Step 5: Find f(x)

Use the given condition to find the equation.

  1. Substitute:
    f(0) = (0^4)/(12) - sin(0) + 3(0) + C
  2. Substitute:
    4 = (0^4)/(12) - sin(0) + 3(0) + C
  3. Evaluate:
    4 = 0 - 0 + 0+ C
  4. Solve:
    4 = C
  5. Define:
    f(x) = (x^4)/(12) - sin(x) + 3x + 4
User Zufar Muhamadeev
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories