Answer:
1 in on the map =
on the street
Explanation:
Represent the actual distance as y and the map distance as x
So:
x = 3.5in when y = 8 miles
Required
Determine the proportion
The proportion of map measurement to actual measurement is:
![x : y](https://img.qammunity.org/2021/formulas/mathematics/high-school/e3ld7azx7ybod14jh7w09uya1vs02t5kqk.png)
This gives:
![3.5\ in : 8\ miles](https://img.qammunity.org/2021/formulas/mathematics/high-school/glm7esvjkapothwlntasehg6c72udlumnl.png)
Divide by 3.5
![(3.5\ in)/(3.5) : (8\ miles)/(3.5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rydvpdq5stoqsui0i60sqeqdviizhhl22s.png)
![1\ in: (8\ miles)/(3.5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ok0pdnv8qql7d190st7k8qpqo1ji9orp1n.png)
Simplify the fraction
![1\ in: (8 * 2\ miles)/(3.5*2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hykl4xa3fo7u9sq2hndvqruocom8ap2621.png)
![1\ in: (16\ miles)/(7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o4k8mnh11ny6b3ryify6m0dsktn92w5zeu.png)
![1\ in: (16)/(7)\ miles](https://img.qammunity.org/2021/formulas/mathematics/high-school/qd7p1kuhiddhp18plhoi3cmxjbxncbp66r.png)
This means that:
1 in on the map =
on the street