Answer:
$632.15
Explanation:
Compound Interest Formula
![\large \text{$ \sf A=P\left(1+(r)/(n)\right)^(nt) $}](https://img.qammunity.org/2023/formulas/mathematics/college/a2h2k73eemgbrq3rhqgu7istzwptcok98e.png)
where:
- A = final amount
- P = principal amount
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Given:
- P = $300
- r = 5% = 0.05
- n = 4 (quarterly)
- t = 15 years
Substitute the given values into the formula and solve for A:
![\implies \sf A=300\left(1+(0.05)/(4)\right)^(4 * 15)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbsrjfwp038rn6is9giyck45qy0f3cw3x1.png)
![\implies \sf A=300\left(1.0125}\right)^(60)](https://img.qammunity.org/2023/formulas/mathematics/high-school/admxrk5ssjzdshss15wehh8q40bgwn7be1.png)
![\implies \sf A=632.1544041](https://img.qammunity.org/2023/formulas/mathematics/high-school/irei97t2cmdozvtqtlq32sh1zs0mueyi90.png)
Therefore, the investment will be worth $632.15 in 15 years.