Answer:
![A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/je1q5yiswozirpusooammk4hwk8pi0rzlh.png)
![\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/ypruvl9dd85s1et4hwtbgk4ev54qtz4y25.png)
Therefore, we conclude that
![A(BC)=(AB)C](https://img.qammunity.org/2021/formulas/mathematics/college/qqvl1n66bvnfjm9lb25w3ph633rvwnybdb.png)
Explanation:
Given that the associative law of matrix multiplication
![A(BC)=(AB)C](https://img.qammunity.org/2021/formulas/mathematics/college/qqvl1n66bvnfjm9lb25w3ph633rvwnybdb.png)
Let
![A=\begin{pmatrix}1&2\\ 3&4\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/5cctjkzr8p8usxwm2063bhdljbfhwsc2l2.png)
![B\:=\:\begin{pmatrix}1&0\\ 1&2\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/p42fhw9es2j3mtt0qei28xnfghle67oreo.png)
![C=\begin{pmatrix}1&3\\ \:1&1\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/co58zgnuc5vv1bb92e87m290j8wtzq2d6v.png)
proving
A(BC)=(AB)C
Determining the L.H.S
![A\left(BC\right)=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\:\left[\:\begin{pmatrix}1&0\\ \:\:\:1&2\end{pmatrix}\begin{pmatrix}1&3\\ \:\:\:\:1&1\end{pmatrix}\right]\:](https://img.qammunity.org/2021/formulas/mathematics/college/eg99fsp8aa2rvto0hewhhj99mj04f01amj.png)
First determining BC
as multiplying the rows of the first matrix by the column of the second matrix
![BC=\begin{pmatrix}1&0\\ \:1&2\end{pmatrix}\begin{pmatrix}1&3\\ \:1&1\end{pmatrix}=\begin{pmatrix}1\cdot \:\:1+0\cdot \:\:1&1\cdot \:\:3+0\cdot \:\:1\\ \:1\cdot \:\:1+2\cdot \:\:1&1\cdot \:\:3+2\cdot \:\:1\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/glcbnrs7h4fo023vjnfxornlg2cvfzxjvx.png)
so the matrix equation becomes
![A\left(BC\right)=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\begin{pmatrix}1&3\\ \:3&5\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/j9k0484mbs49v7a13wtokkkgz9f9lmmytb.png)
![=\begin{pmatrix}1\cdot \:1+2\cdot \:3&1\cdot \:3+2\cdot \:5\\ 3\cdot \:1+4\cdot \:3&3\cdot \:3+4\cdot \:5\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/dxiwou5fnbawlf9gbddlxexq4stbpv97e5.png)
![=\begin{pmatrix}7&13\\ 15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/td9lobo2hydblcwn26x65cnx4omt3k85p4.png)
![A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/je1q5yiswozirpusooammk4hwk8pi0rzlh.png)
Determining the R.H.S
![\left(AB\right)C=\left[\begin{pmatrix}1&2\\ \:\:\:\:3&4\end{pmatrix}\:\begin{pmatrix}1&0\\ \:1&2\end{pmatrix}\right]\begin{pmatrix}1&3\\ \:\:\:\:\:1&1\end{pmatrix}\:](https://img.qammunity.org/2021/formulas/mathematics/college/6lcaikivh2o0wvwagcf70pcxb90ajhcl5q.png)
First determining AB
as multiplying the rows of the first matrix by the column of the second matrix
![AB=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\begin{pmatrix}1&0\\ \:\:1&2\end{pmatrix}=\begin{pmatrix}1\cdot \:\:1+2\cdot \:\:1&1\cdot \:\:0+2\cdot \:\:2\\ \:3\cdot \:\:1+4\cdot \:\:1&3\cdot \:\:0+4\cdot \:\:2\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/q5ojvcvwveomku3qq9qu8akbabt0twtp19.png)
![=\begin{pmatrix}3&4\\ 7&8\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/bsry787mf48gue1tbl55vkt25i8dntl5vt.png)
so the matrix equation becomes
![AB\left(C\right)=\begin{pmatrix}3&4\\ \:\:7&8\end{pmatrix}\begin{pmatrix}1&3\\ \:\:1&1\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/lehovywjf7x0v8jy2sq21x7tbhw6rggof5.png)
multiplying the rows of the first matrix by the column of the second matrix
![=\begin{pmatrix}3\cdot \:1+4\cdot \:1&3\cdot \:3+4\cdot \:1\\ 7\cdot \:1+8\cdot \:1&7\cdot \:3+8\cdot \:1\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/c0m15dtfd2qxmhki83h9ss26yjkzywumo7.png)
![=\begin{pmatrix}7&13\\ 15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/td9lobo2hydblcwn26x65cnx4omt3k85p4.png)
Thus,
![\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/ypruvl9dd85s1et4hwtbgk4ev54qtz4y25.png)
as
![A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/je1q5yiswozirpusooammk4hwk8pi0rzlh.png)
![\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/ypruvl9dd85s1et4hwtbgk4ev54qtz4y25.png)
Therefore, we conclude that
![A(BC)=(AB)C](https://img.qammunity.org/2021/formulas/mathematics/college/qqvl1n66bvnfjm9lb25w3ph633rvwnybdb.png)