31.6k views
4 votes
Prove that A(BC)=(AB)C as the associative law of matrix multiplication​

1 Answer

3 votes

Answer:


A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}


\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}

Therefore, we conclude that


A(BC)=(AB)C

Explanation:

Given that the associative law of matrix multiplication​


A(BC)=(AB)C

Let


A=\begin{pmatrix}1&2\\ 3&4\end{pmatrix}


B\:=\:\begin{pmatrix}1&0\\ 1&2\end{pmatrix}


C=\begin{pmatrix}1&3\\ \:1&1\end{pmatrix}

proving

A(BC)=(AB)C

Determining the L.H.S

  • A(BC)


A\left(BC\right)=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\:\left[\:\begin{pmatrix}1&0\\ \:\:\:1&2\end{pmatrix}\begin{pmatrix}1&3\\ \:\:\:\:1&1\end{pmatrix}\right]\:

First determining BC

as multiplying the rows of the first matrix by the column of the second matrix


BC=\begin{pmatrix}1&0\\ \:1&2\end{pmatrix}\begin{pmatrix}1&3\\ \:1&1\end{pmatrix}=\begin{pmatrix}1\cdot \:\:1+0\cdot \:\:1&1\cdot \:\:3+0\cdot \:\:1\\ \:1\cdot \:\:1+2\cdot \:\:1&1\cdot \:\:3+2\cdot \:\:1\end{pmatrix}


=\begin{pmatrix}1&3\\ 3&5\end{pmatrix}

so the matrix equation becomes


A\left(BC\right)=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\begin{pmatrix}1&3\\ \:3&5\end{pmatrix}


=\begin{pmatrix}1\cdot \:1+2\cdot \:3&1\cdot \:3+2\cdot \:5\\ 3\cdot \:1+4\cdot \:3&3\cdot \:3+4\cdot \:5\end{pmatrix}


=\begin{pmatrix}7&13\\ 15&29\end{pmatrix}


A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}

Determining the R.H.S

  • (AB)C


\left(AB\right)C=\left[\begin{pmatrix}1&2\\ \:\:\:\:3&4\end{pmatrix}\:\begin{pmatrix}1&0\\ \:1&2\end{pmatrix}\right]\begin{pmatrix}1&3\\ \:\:\:\:\:1&1\end{pmatrix}\:

First determining AB

as multiplying the rows of the first matrix by the column of the second matrix


AB=\begin{pmatrix}1&2\\ \:\:3&4\end{pmatrix}\begin{pmatrix}1&0\\ \:\:1&2\end{pmatrix}=\begin{pmatrix}1\cdot \:\:1+2\cdot \:\:1&1\cdot \:\:0+2\cdot \:\:2\\ \:3\cdot \:\:1+4\cdot \:\:1&3\cdot \:\:0+4\cdot \:\:2\end{pmatrix}


=\begin{pmatrix}3&4\\ 7&8\end{pmatrix}

so the matrix equation becomes


AB\left(C\right)=\begin{pmatrix}3&4\\ \:\:7&8\end{pmatrix}\begin{pmatrix}1&3\\ \:\:1&1\end{pmatrix}

multiplying the rows of the first matrix by the column of the second matrix


=\begin{pmatrix}3\cdot \:1+4\cdot \:1&3\cdot \:3+4\cdot \:1\\ 7\cdot \:1+8\cdot \:1&7\cdot \:3+8\cdot \:1\end{pmatrix}


=\begin{pmatrix}7&13\\ 15&29\end{pmatrix}

Thus,


\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}

as


A\left(BC\right)=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}


\left(AB\right)C=\begin{pmatrix}7&13\\ \:15&29\end{pmatrix}

Therefore, we conclude that


A(BC)=(AB)C

User Enterx
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories