133k views
20 votes
Find the equation of the line through point (2,−4) and parallel to −6x+2y=4

User Mossen
by
4.2k points

2 Answers

0 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \: equation \: : \:y = 3x - 10

____________________________________


\large \tt Solution \: :

Slope of parallel lines are equal.


\texttt{Step 1 - Find slope of line -6x + 2y = 4}


\qquad \tt \rightarrow \: - 6x + 2y = 4


\qquad \tt \rightarrow \: 2( - 3 x+ y) = 2(2)


\qquad \tt \rightarrow \: - 3x + y = 2


\qquad \tt \rightarrow \: y = 3x + 2

comparison with y = mx + c, m = slope = 3


\textsf{Step 2 - Use slope and points to find equation}


\qquad \tt \rightarrow \: y - ( - 4) = 3(x - 2)


\qquad \tt \rightarrow \: y + 4 = 3x - 6


\qquad \tt \rightarrow \: y = 3x - 6 - 4


\qquad \tt \rightarrow \: y = 3x - 10

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Miles Erickson
by
4.2k points
2 votes

-------------------------------------------------------------------------------------------------------------

Answer:
\textsf{y = 3x - 10}

-------------------------------------------------------------------------------------------------------------

Given:
\textsf{Goes through (2, -4) and parallel to -6x + 2y = 4}

Find:
\textsf{The equation that follows the criteria provided}

Solution: First we need to solve for y in the equation that was provided so we can get the slope. Then we plug in the values into the point-slope formula and then solve for y to get our final equation.

Add 6x to both sides


  • \textsf{-6x + 6x + 2y = 4 + 6x}

  • \textsf{2y = 4 + 6x}

Divide both sides by 2


  • \textsf{2y/2 = (4 + 6x)/2}

  • \textsf{y = (4 + 6x)/2}

  • \textsf{y = (4/2) + (6x/2)}

  • \textsf{y = 2 + 3x}

Plug in the values


  • \textsf{y - y}_1\textsf{ = m(x - x}_1\textsf{)}

  • \textsf{y - (-4) = 3(x - 2)}

Distribute and simplify


  • \textsf{y + 4 = (3 * x) + (3 * -2)}

  • \textsf{y + 4 = 3x - 6}

Subtract 4 from both sides


  • \textsf{y + 4 - 4 = 3x - 6 - 4}

  • \textsf{y = 3x - 6 - 4}

  • \textsf{y = 3x - 10}

Therefore, the equation that follows the information that was provided in the problem statement is y = 3x - 10.

User Hgcummings
by
4.1k points