169,692 views
19 votes
19 votes
Find the equation of the line in slope-intercept form containing the points (6, -1) and (-3, 2).

User Olsli
by
2.7k points

1 Answer

14 votes
14 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \: y= - \cfrac{x}{ 3} + 1

____________________________________


\large \tt Solution \: :

Equation of line (two point form) :


\qquad \tt \rightarrow \: (y - y_1) = \cfrac{y _1- y_2}{ x_1 - x_2} (x - x_1)


\qquad \tt \rightarrow \: (y - 2) = \cfrac{2 - ( - 1)}{ - 3 - 6} (x - ( - 3))


\qquad \tt \rightarrow \: (y - 2) = \cfrac{2 + 1}{ - 9} (x + 3)


\qquad \tt \rightarrow \: (y - 2) = - \cfrac{3}{ 9} (x + 3)


\qquad \tt \rightarrow \: (y - 2) = - \cfrac{1}{ 3} (x + 3)


\qquad \tt \rightarrow \: y - 2= - \cfrac{x}{ 3} - \cfrac{3}{3}


\qquad \tt \rightarrow \: y = - \cfrac{x}{ 3} - 1 \cfrac{}{} + 2


\qquad \tt \rightarrow \: y = - \cfrac{x}{ 3} + 1

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Salhin
by
3.1k points