Answer:
Explanation:
G is the incenter of ΔABC,
Incenter of a triangle is defined by the point where angle bisectors of the interior angles intersect.
10). m∠ABG = m∠CBG = 25°
11). m∠BCG = m∠ACG = 18°
Therefore, m∠BCA = m∠BCG + m∠ACG = 2×18° = 36°
12). m∠ABC + m∠BAC + m∠ACB = 180°
2(25)° + m∠BAC + 36° = 180°
m∠BAC = 180° - 86° = 94°
13). m∠BAG =
(m∠BAC) = 47°
14). Since, incenter is equidistant from all sides of the triangle,
Therefore, DG = GF = FE = 4 units
15). In right triangle BEG,
tan(25)° =
![\frac{\text{GE}}{\text{BE}}](https://img.qammunity.org/2021/formulas/mathematics/college/dnbl4ivhgffdoxshhmizzpgkyfp4hmcybt.png)
BE =
=
![\frac{4}{\text{tan}25}](https://img.qammunity.org/2021/formulas/mathematics/college/b2p7dme7g66cdqy0t337x4eb8pcowkamc6.png)
BE = 8.6
16). In right triangle BEG,
cos(25)° =
![\frac{\text{4}}{\text{BG}}](https://img.qammunity.org/2021/formulas/mathematics/college/sb5xa98szr2basjhn2l43autclphtthcj0.png)
BG =
= 4.4
17). In right triangle GEC,
sin(18)° =
![\frac{\text{GE}}{\text{GC}}](https://img.qammunity.org/2021/formulas/mathematics/college/73404aw9q32u8w6uhmqjozstg4wy29y0ra.png)
GC =
= 12.9