Answer:
x = 10 + √389, y = -10 + √389 // x = 29.7231, y = 9.72308
or
x = 10 - √389, y = -10 - √389 // x = -9.72308, y = -29.7231
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Algebra I
- Solving systems of equations using substitution/elimination
- Standard Form: ax² + bx + c = 0
- Quadratic Formula:
Explanation:
Step 1: Define Systems
xy = 289
x - y = 20
Step 2: Rewrite Systems
x - y = 20
- Subtract x on both sides: -y = 20 - x
- Divide -1 on both sides: y = x - 20
Step 3: Redefine Systems
xy = 289
y = x - 20
Step 4: Solve for x
Substitution
- Substitute in y: x(x - 20) = 289
- Distribute x: x² - 20x = 289
- Rewrite [SF]: x² - 20x - 289 = 0
- Define variables: a = 1, b = -20, c = -289
- Substitute [QF]:
- Exponents:
- Multiply:
- Add:
- Simplify:
- Factor GCF:
- Divide:
Step 5: Solve for y
Possibility 1: x = 10 + √389
- Define equation: x - y = 20
- Substitute in x: (10 + √389) - y = 20
- Isolate y term: -y = 20 - (10 + √389)
- Isolate y: y = (10 + √389) - 20
- Combine like terms: y = -10 + √389
- Evaluate: y = 9.72308
Possibility 2: x = 10 - √389
- Define equation: x - y = 20
- Substitute in x: (10 - √389) - y = 20
- Isolate y term: -y = 20 - (10 - √389)
- Isolate y: y = (10 - √389) - 20
- Combine like terms: y = -10 - √389
- Evaluate: y = -29.7231
Step 6: Identify Solutions
Possibility 1:
x = 10 + √389, y = -10 + √389
x = 29.7231, y = 9.72308
Possibility 2:
x = 10 - √389, y = -10 - √389
x = -9.72308, y = -29.7231