7.0k views
3 votes
Given the quadratic function f(x) = 4x^2 - 4x + 3, determine all possible solutions for f(x) = 0

User Mangusto
by
8.6k points

1 Answer

2 votes

Answer:

The solutions to the quadratic function are:


x=i\sqrt{(1)/(2)}+(1)/(2),\:x=-i\sqrt{(1)/(2)}+(1)/(2)

Explanation:

Given the function


f\left(x\right)\:=\:4x^2\:-\:4x\:+\:3

Let us determine all possible solutions for f(x) = 0


0=4x^2-4x+3

switch both sides


4x^2-4x+3=0

subtract 3 from both sides


4x^2-4x+3-3=0-3

simplify


4x^2-4x=-3

Divide both sides by 4


(4x^2-4x)/(4)=(-3)/(4)


x^2-x=-(3)/(4)

Add (-1/2)² to both sides


x^2-x+\left(-(1)/(2)\right)^2=-(3)/(4)+\left(-(1)/(2)\right)^2


x^2-x+\left(-(1)/(2)\right)^2=-(1)/(2)


\left(x-(1)/(2)\right)^2=-(1)/(2)


\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)

solving


x-(1)/(2)=\sqrt{-(1)/(2)}


x-(1)/(2)=√(-1)\sqrt{(1)/(2)}
\sqrt{-(1)/(2)}=√(-1)\sqrt{(1)/(2)}

as


√(-1)=i

so


x-(1)/(2)=i\sqrt{(1)/(2)}

Add 1/2 to both sides


x-(1)/(2)+(1)/(2)=i\sqrt{(1)/(2)}+(1)/(2)


x=i\sqrt{(1)/(2)}+(1)/(2)

also solving


x-(1)/(2)=-\sqrt{-(1)/(2)}


x-(1)/(2)=-i\sqrt{(1)/(2)}

Add 1/2 to both sides


x-(1)/(2)+(1)/(2)=-i\sqrt{(1)/(2)}+(1)/(2)


x=-i\sqrt{(1)/(2)}+(1)/(2)

Therefore, the solutions to the quadratic function are:


x=i\sqrt{(1)/(2)}+(1)/(2),\:x=-i\sqrt{(1)/(2)}+(1)/(2)

User Connie
by
8.0k points

No related questions found