2.0k views
24 votes
Find y in terms with z. help me please :)​

Find y in terms with z. help me please :)​-example-1
User Sean Azlin
by
4.8k points

2 Answers

6 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


  • \qquad \tt \rightarrow y = 5z

____________________________________


\large \tt Solution \: :

[ let the point at which line segments SV and RT intersects be O ]


\qquad \tt \rightarrow \: \angle ROV + \angle ROS = 180°

[ linear pair ]


\qquad \tt \rightarrow \: \angle ROV = 180 - \angle ROS


\qquad \tt \rightarrow \: \angle ROV = 180 -2y

____________________________________


\qquad \tt \rightarrow \: \angle SVU = \angle ROV + \angle TRV

[ Exterior angle = sum of opposite interior angles ]


\qquad \tt \rightarrow \: \angle SVU = 180 - 2y + y


\qquad \tt \rightarrow \: \angle SVU = 180 - y

( let it be equation 1 )

____________________________________


\qquad \tt \rightarrow \: \angle SVU + \angle SUV + \angle VSU = 180°

[ Sum of angles of Triangle ]


\qquad \tt \rightarrow \: \angle SVU + 4z + z = 180°


\qquad \tt \rightarrow \: \angle SVU + 5z = 180°


\qquad \tt \rightarrow \: \angle SVU = 180° - 5z

( let it be equation 2 )

____________________________________

By comparing both equations :


\qquad \tt \rightarrow \: \angle SVU = 180 - y = 180 - 5z


\qquad \tt \rightarrow \: 180 - y = 180 - 5z

( Add 180° on both sides )


\qquad \tt \rightarrow \: 180 - y + 180 = 180 - 5z + 180


\qquad \tt \rightarrow \: - y = - 5z


\qquad \tt \rightarrow \: y = 5z

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Harrisonlee
by
5.2k points
5 votes

Answer:

y = 5z

Explanation:

added in the picture

Find y in terms with z. help me please :)​-example-1
User HARIOM PHOGAT
by
4.8k points