40.2k views
5 votes
Primitive function for:

1. f(x)=4e2x+e−x, sådan att F(0)=2

User SolveMe
by
8.3k points

1 Answer

5 votes

The primitive function for
f(x) = 4e^(2x) + e^(-x) is given by it's indefinite integral.

To calculate it, recall:


(d)/(dx)e^(ax)=ae^(ax)


\int c f(x)dx = c\int f(x)dx

Let's begin


\int 4e^(2x)+e^(-x)dx \\4\int e^(2x)dx+ \int e^(-x)dx\\4(e^(2x))/(2)+(e^(-x))/(-1) + c\\


F(x) = 2e^(2x)-e^(-x) +c

To find the costant, we just need to use the fact that
F(0)=2


F(0) = 2 \\4e^(0)+e^(0) + c =2\\5+c =2\\c=-3

Therefore,


\boxed{F(x) = 2e^(2x) - e^(-x) -3 }

User Bitsmack
by
7.5k points