Answer:
Solving the system of equations using elimination method, we get x=2, y=0
The ordered pair is: (2,0)
Explanation:
We need to solve the system of equations using elimination method.
![5x-2y = 10\\4x + 2y = 8](https://img.qammunity.org/2021/formulas/mathematics/college/by5etoyw7uch3aiv3orcq2ecj23bldbyrp.png)
Let:
![5x-2y = 10--eq(1)\\4x + 2y = 8--eq(2)](https://img.qammunity.org/2021/formulas/mathematics/college/dli4d0w3oxbq2r4dlcnf7df8a0cdjkkyw3.png)
Add both equations to eliminate y and find value of x
![5x-2y = 10\\4x + 2y = 8\\------\\9x=18\\x=(18)/(9)\\x=2](https://img.qammunity.org/2021/formulas/mathematics/college/wrh0906cleztnobser41icihxuhi1m7su6.png)
We get value of x=2
Now, finding value of y by putting value of x in eq(1)
![5x-2y=10\\Put\:x=2\\5(2)-2y=10\\10-2y=10\\-2y=10-10\\-2y=0\\y=0](https://img.qammunity.org/2021/formulas/mathematics/college/jknx4wgqosnlktrfv4jpw2mxlc56bol27j.png)
We get value of y= 0
Solving the system of equations using elimination method, we get x=2, y=0
The ordered pair is: (2,0)